UP | HOME

Week 6

Schedule

Summary Solutions Time (min)
Lecture 7    
* opposite of \(\mathcal{V}\)-category (12:50)    
* \(\mathcal{V}\)-profunctor (14:08)    
* \(\mathcal{V}\)-category (23:50)    
* collage of a \(\mathcal{V}\)-profunctor (27:15)    
* the "can I backtrack in \(\mathcal{X}\)" is not explicit, but rather comes from the order preservation of the \(\mathcal{V}\)-profunctor (30:06)    
* \(\mathcal{X} \unicode{x21F8} \mathcal{Y}\) is contravariant in \(\mathcal{X}\) and covariant in \(\mathcal{Y}\) (31:25)    
* a \(\mathcal{V}\)-profunctor, denoted by \(\mathcal{X} \unicode{x21F8} \mathcal{Y}\), can have a collage which is not a function (32:08)    
* composition of profunctors (41:55)    
* identity profunctor (44:00)    
SSC: Chapter 4 * EX 4.9 10
* \(\mathbf{Bool}\)-profunctor as feasibility relation (D 4.2) * EX 4.22 5
* \(\mathcal{V}\)-profunctor (D 4.8)    
* composite of \(\mathcal{V}\)-profunctors (D 4.21)    
Total   15

Notes

Author: koo

Created: 2020-01-13 Mon 14:36